Carbon Capture: The PR and the Realities

June Sekera

* Visiting Scholar, The New School for Social Research

* Senior Research Fellow, Global Development Policy Center, Boston University sekeraj@newschool.edu

> February 18, 2023 Briefing for the League of Women Voters

Carbon Capture: We hear that it's a "climate solution"

We hear:

- * It's "unproven" but very promising
- * It's expensive
- * It needs gov't investment to bring costs down

What we *don't* hear:

- * It is proven. It has so far proven not to work.
- * The public has been (mainly) paying for it already.

The PR We Hear

The Problem We Face

The Realities of Carbon Capture

What *Could* Work

The PR

Advocates & promoters of carbon capture have crafted the vocabulary and thereby controlled the conversation.

- •Carbon "capture"
- Capture "technology"
- •"Net zero"
- "Carbon management""Carbon recycling"

- Sounds good.
- Sounds high-tech & clean.
- Sounds great.
- Sounds professional.
- Sounds fabulous.

Does carbon capture "work"?

To answer, define the problem and the need.

The problem:

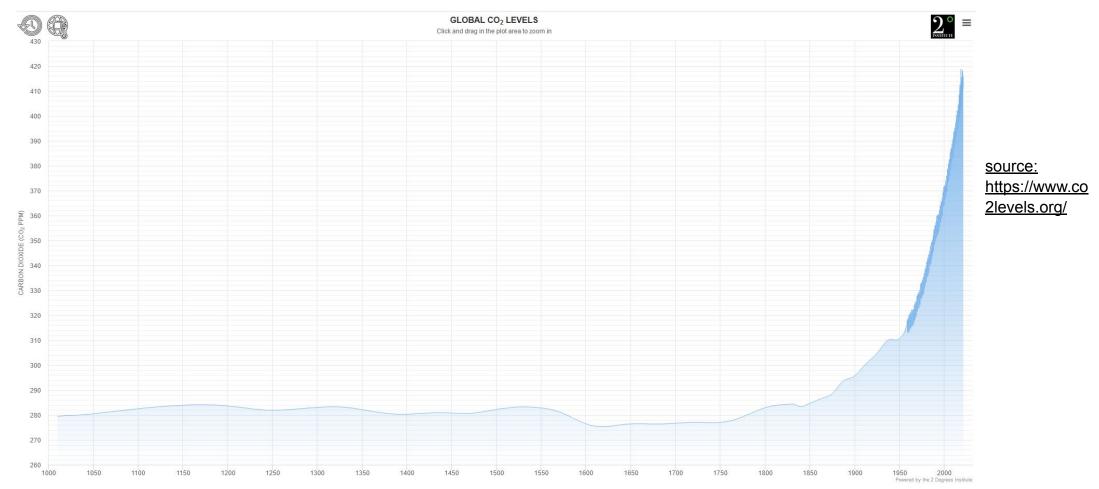
Excess concentration of CO_2 in the atmosphere.

The need:

Reduce the level of CO_2 in the atmosphere.

- **The 'carbon capture' solutions:**
 - 1. Capture emissions at sources.
 - 2. Pull CO2 out of the air "direct air capture".
 - I.e., We do not need to stop burning fossil fuels.

But neither "solution" is correcting the problem. And #1 does not even address it.


The problem

that needs to be solved:

The excess CO₂ that is in the atmosphere. (and other GHG's, but today we're only talking about *carbon* capture).

CO₂ level in the atmosphere 280 ppm for 6,000 years of human civilization, *until* the Industrial Revolution, mid-1700's. Now at 420 ppm.

CO₂ level in the atmosphere (since 1000). Carbon cycle kept balance for 1000's of years.

Carbon Capture / Sequestration

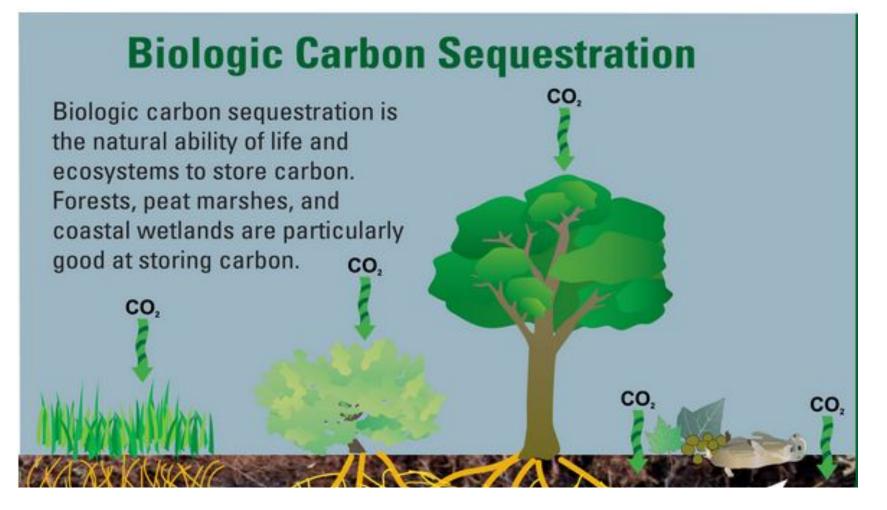
2 Approaches:

• Mechanical methods

• Biological methods

The Two Mechanical Methods

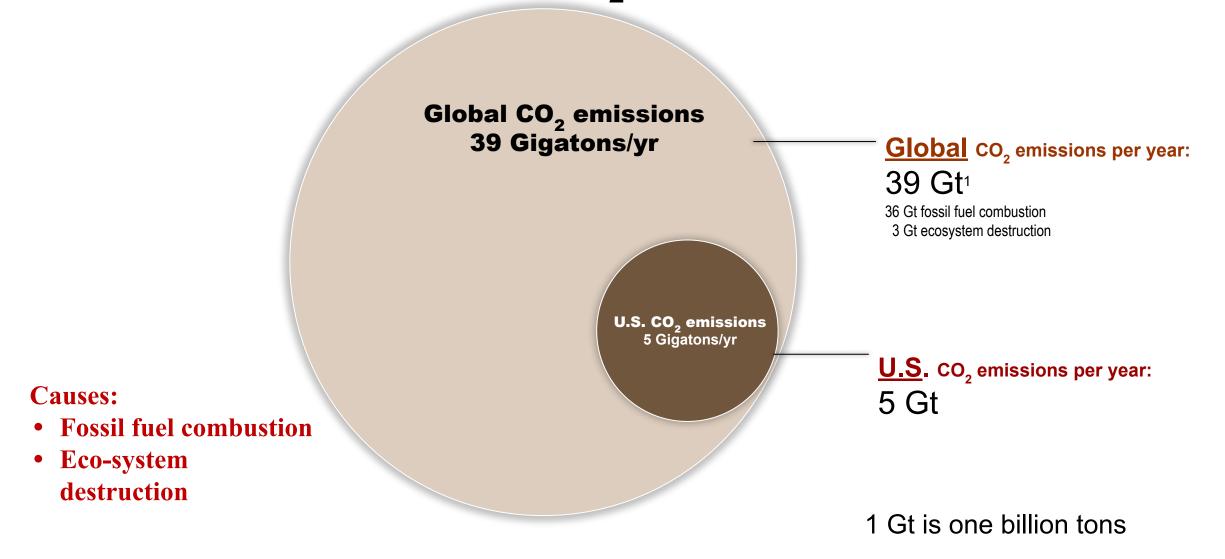
"Point-Source capture" ('CCS' and 'CCUS')



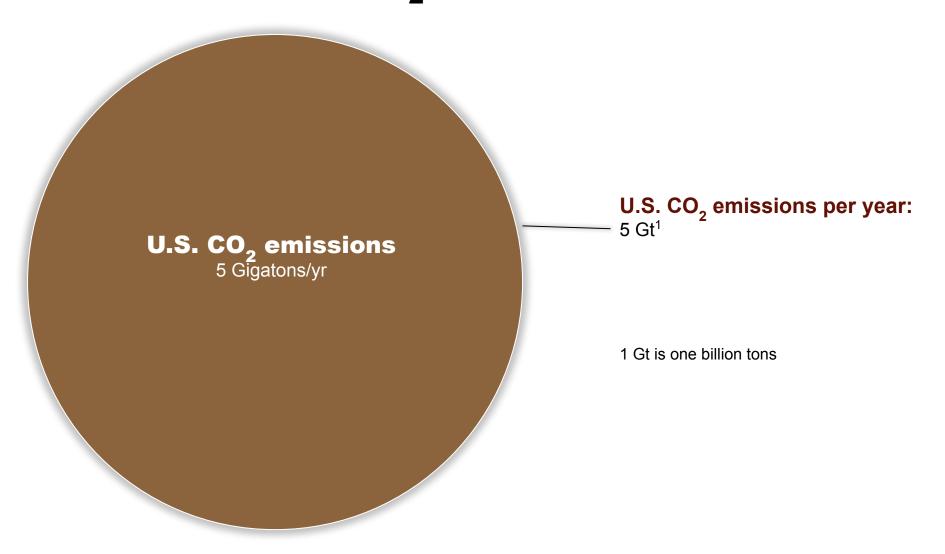
"Direct Air Capture" (DAC - 'direct air capture')

Industrial machinery traps flue gasses or sucks in air. Chemicals separate out CO₂

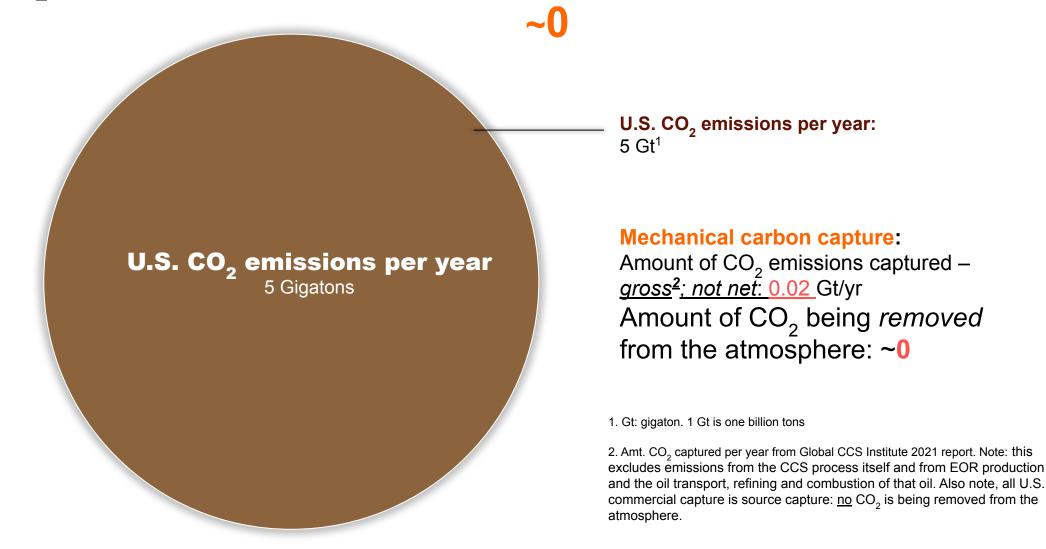
Biological Methods



What are we doing now?


in terms of CO₂ emissions and carbon capture

First, the context...


Anthropogenic CO₂ emissions/yr

<u>U.S.</u> anthropogenic CO_2 emissions/yr

CO₂ removed from the atmosphere now by mechanical carbon capture:

Amount of CO₂ being removed globally 0.000004 Gt/yr

Mechanical methods are removing ~nothing as of now. But...

Scientists say* we'd need to get to **6-10** Gt (*billions* of tons) *per year* removal from the atmosphere by 2050.

From 0 now to 6 billion by 2050?

* IPCC and U.S. National Academies of Sciences

IPCC Report:

 <u>Carbon Capture</u> – "direct air carbon capture and storage" -- fails now and remains ineffective through mid-century.

Method	Global	Global	Global
	GtCO2/yr	GtCO2/yr	GtCO2/yr
	by 2030	by 2050	by 2100
DACCS	0	0.02	1.02

Global CO₂ Removal/yr by DAC

Source: IPCC 2022 *Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.* Page 1265.

IPCC Report

Global CO₂ Removal/yr: Biological methods and DAC

Method	Global GtCO2/yr by 2030	Global GtCO2/yr by 2050	Global GtCO2/yr by 2100
Annual net CO2 removal, <u>biological</u> <u>sequestration</u> ("managed land")	0.86	2.98	4.19
DACCS	0	0.02	1.02

IPCC defines "managed land" to mean primarily reforestation, afforestation, improved forest management and ecosystem conservation.

Data source: IPCC 2022 *Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.* Page 12-40.

What is "carbon capture" and "storage"?

Mechanical-chemical carbon capture. (Not biological sequestration).

It's a multi-stage, mechanical / chemical / industrial process.

- 1. Capture the CO_2 .
- 2. Transport the CO_2 .
- 3. Do something with the CO_2 .

"Capture"

Mechanical-chemical carbon capture. (Not biological sequestration.)

2 types of carbon capture

The Two Mechanical-Chemical Approaches

Trap Emissions

"Point-Source capture" ('CCS' and 'CCUS')

Pull CO₂ from Air

"Direct Air Capture" (DAC - 'direct air capture').

Industrial machinery traps flue gasses or sucks in air. Chemicals separate out CO₂

Chemicals used in carbon capture...

Chemicals used as sorbents and solvents, or used or produced in their manufacture:

- Detassium hydroxide (caustic potash). DAC. Swallowing can cause severe burns of mouth, throat and stomach.
- Sodium hydroxide (lye). DAC. Contact can cause severe burns and blindness.
- **Monoethanolamine** (MEA). CCS, DAC. Flammable and vapor is highly toxic.
- **Ethylene oxide**, used in production of MEA. Flammable/explosive; can be carcinogenic, neurotoxic

All are toxic and pose dangers to communities.

(Not all carbon capture processes use these chemicals; e.g., ethanol CCS).

13 U.S. Carbon Capture sites in commercial operation.

Facility Title	Location	Owner or Oil Partner	Start Date	Industry	Storage Type	<u>Max</u> Capture Capacity Mt/yr
Terrell Natural Gas Processing Plant	Val Verde, Texas	Pennzoil and Altura	1972	Natural gas processing	EOR	.5
Enid Fertilizer	Enid, Oklahoma	Koch Fertilizer Daylight Petroleum	1982	Fertilizer production	EOR	.2
Shute Creek Gas Processing Plant	Kemmerer, Wyoming	Owned by ExxonMobil	1986	Natural gas processing	EOR	7
Great Plains Synfuels Plant and Weyburn- Midale	Beulah, North Dakota	Cenovus, and Apache Energy	2000	Synthetic natural gas (coal gasification ?)	EOR	3
Core Energy CO ₂ -EOR	Otsego County, Michigan	Core Energy	2003	Natural gas processing	EOR	.35
Arkalon CO ₂ Compression Facility	Liberal, Kansas	Chaparral Energy	2009	Ethanol production	EOR	.29
Century Plant	Fort Stockton, Texas	Owned by Occidental Petroleum	2010	Natural gas processing	EOR	5
Bonanza BioEnergy CCUS EOR (formerly Conestoga Energy Partners)	Garden City, Kansas	PetroSantander Inc.	2012	Ethanol production	EOR	.1
PCS Nitrogen	Geismar, Louisiana	Denbury	2013	Fertilizer production	EOR	.3
Coffeyville Gasification Plant	Coffeyville, Kansas	Chaparral Energy, and Blue Source	2013	Fertilizer production	EOR	.9
Air Products Steam Methane Reformer	Port Arthur, Texas	Denbury	2013	Hydrogen production	EOR	1
Illinois Industrial Carbon Capture and Storage	Decatur, Illinois	ADM	2017	Ethanol production	geolog storage	1
Red Trail Energy CCS	Richardton, ND		2022	Ethanol production	geolog storage	.18
Total - million metric tons/yr.		-	c			19.82

Data source: "Global Status of CCS 2022", Global CCS Institute

All are enabled by taxpayer subsidies. *None* remove CO_2 from the atmosphere. *None* is at an electric power plant. 94% of captured CO_2 is used to pump out more oil (EOR).

All carbon capture projects at U.S. power plants have failed.

After \$2 billion in public subsidies.

U.S. power-plant CCS projects – all were withdrawn or failed after starting. All received federal \$:

- FutureGen (IL) CCS plan cancelled (2015)
- Summit (TX) Cancelled (2017)
- Kemper (Miss) Cancelled 2017
- American Elec. Power (W VA) Withdrawn (2011)
- Antelope Valley (ND) Withdrawn (2012)
- Southern Company (AL) Withdrawn (2010)
- Petra Nova (TX) "Shuttered" (2020)

The only operating CCS power plant in the world (Canada) – caused the price of electricity to double.

'Carbon capture' –

capture at emissions sources (CCS) –

fails to reduce

the level of CO2 in the atmosphere:

Source Capture

CCS does <u>not</u> remove CO₂ from the atmosphere

In some cases, it can *increase* the amount of CO_2 in the atmosphere

CCS with 'enhanced oil recovery' Coal-fired power plants. Emits 3.4 to 4.7 tons/ CO₂ for each ton removed

direct air capture (DAC)

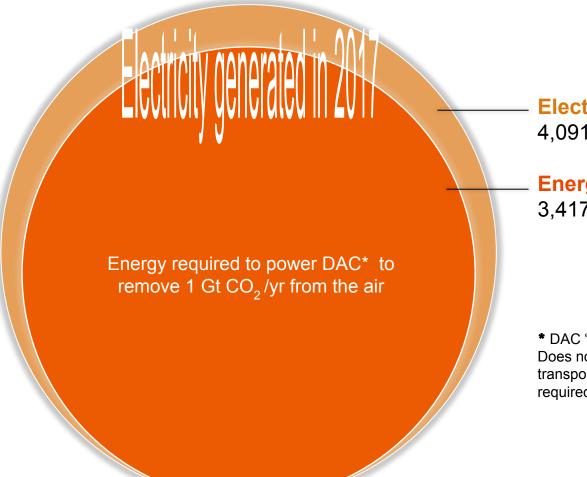
Occidental Petroleum and Carbon Engineering

Powered mainly by fossil fuel (natural gas)
Business plan relies on gov't subsidies
Captured CO₂ will be used for oil extraction (EOR)

Aims to capture 1 million tons/yr (0.001 gigaton/yr)

Fossil fuel-powered DAC is counterproductive

DAC fossil-fuel-powered


Emits 1.5 to 3.4 tons/CO₂ for each ton captured

Not counting the EOR

Project Bison - DAC plant just announced (Wyoming). Will likely be powered by natural gas, at least initially. Relies on 45Q tax credit.

DAC Energy usage to remove 1 Gt CO₂

Electricity Generated in the US vs Energy Required to Power DAC* for 1 Gt Capture

Electricity generated in the US in 2017: 4,091 TWh

Energy required by DAC to remove* 1 Gt of CO₂/yr: 3,417 TWh

* DAC "liquid solvent" process.

Does not include energy consumption for manufacturing and transporting the millions of tons of solvent/sorbent chemicals required for capture.

Sources: Climate Advisers (2018), Smith et al (2016), House et al (2011), summarized in Sekera & Lichtenberger (2020).

Largest DAC plant in operation now.

Climeworks 'Orca' plant, in Iceland

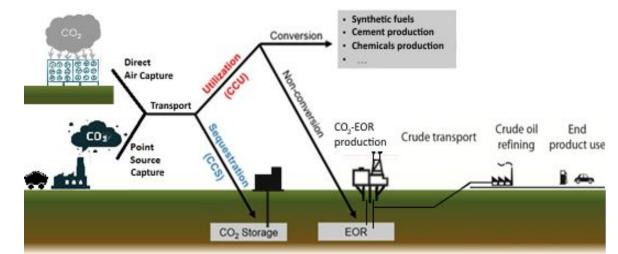
"In a year, it'll capture just 3 seconds' worth of humanity's CO, emissions."

Climate scientist Peter Kalmus, quoted in Business Insider 2021

to get to 1 gigaton/yr capture would take 250,000 of these plants

0.000004 Gt removal/yr

the Process, cont'd

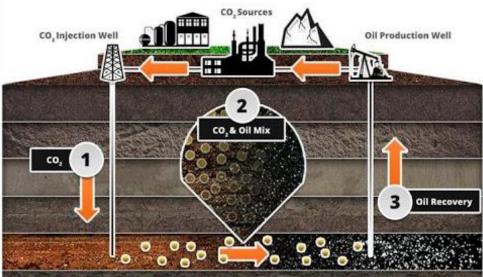

Mechanical-chemical carbon capture. Not biological sequestration.

Transport the CO_2 , by pipelines, to a location to use it or bury it.

What to do with the CO_2 ?

3 choices

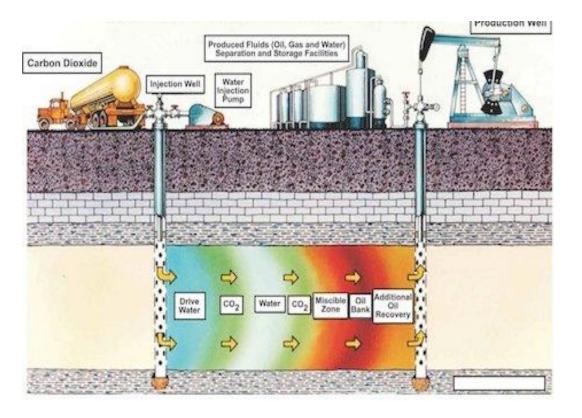
- 1) Inject it underground for 'storage'
- 2) Sell as chemical feedstock
- 3) Sell it for oil extraction



What is done with the CO₂ in the US:

Of the 12 CCS projects:

- •11 oil extraction
- 1 geological storage


(this facility continues to emit 8x as much CO2 as it stores)

94% of captured CO_2 is used for EOR (U.S)

(Enabled by taxpayer subsidies)

Enhanced Oil Recovery (EOR) "injecting CO2 to emit CO2" *

injects carbon dioxide into existing oil wells to flush out remaining, hard-to-pump oil

* IEEFA "Carbon Capture Crux" 2022

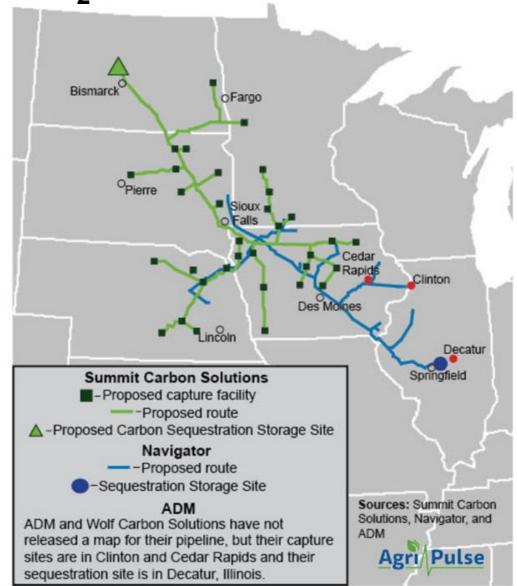
Pipelines and Storage

Pipelines

Compression

Inter-stage piping in the compressor facility (photo ADM) ADM CCS operation at Decatur, III ethanol production plant

Compressor "Booster" Stations

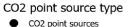

Natural gas compressor booster stations

Planned CO₂ Pipelines – Midwest Ethanol Ventures

Iowa Nebraska Illinois Minnesota South Dakota North Dakota

Land to be taken by Eminent Domain if landowners don't voluntarily give easements.

Source: Agrii-Pulse 1-26-22

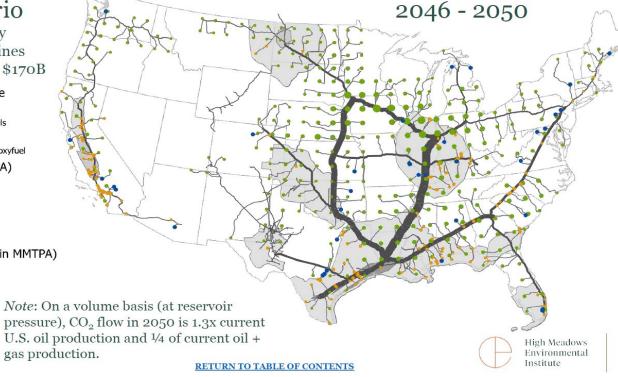

CO₂ Pipelines

CO₂ pipeline network needed: 66,000 miles of CO₂ pipelines

2050 totals: 21,000 km trunk lines + 85,000 km spur lines (equivalent to ~22% of US natural gas transmission pipeline total)

E+ scenario 929 million tCO₂/y 106,000 km pipelines Capital in service: \$170B

- BECCS power and fuels
- Cement w/ ccs
- Natural gas power ccs oxyfuel
- CO2 captured (MMTPA)
- 0.0006449
- 7.9144
- 15.8282
 - 23.7419


Trunk lines (capacity in MMTPA)

328.333

490

Princeton "Net Zero America" Report 2021

Ca

Mi

In

CO₂ pipeline rupture, Mississippi, 2020

"The Gassing of Satartia"

HuffPost Aug. 2021:

'Foaming at the mouth': First responders describe scene after pipeline rupture, gas leak

Sarah Fowler The Clarion-Ledger Published 11:23 a.m. CT Feb. 27, 2020

Story Highlights

- Approximately 300 people were evacuated and 45 treated at area hospitals after a pipeline rupture.
- The pipeline, which ruptured Saturday in Yazoo County, belonged to Denbury Resources out of Texas.
- The pipleline released CO2 into the air, making people "act like zombies," said first responder.
- First responder rescued three people before he too was overtaken by the gas.

* Yazoo County, where the population is majority Black; 34% is poverty level; Friends of the Earth, March 18, 2021.

"It is impossible to guarantee that stored CO₂ will stay underground."

Institute for Energy Economics and Financial Analysis; "Carbon Capture Crux" 2022

Overview of Potential Failure Modes and Effects Associated with CO2 Injection and Storage Operations in Saline Formations

DOE/NETL. December 18, 2020

Exhibit 3-7. Potential failure effect examples from CO2 storage operations Wellbore blowout Ground motion: CO₂/gaseous CO₂ soil Subsidence/ Earthquake contamination of contamination Sinkhole atmosphere damage Oil CO2 Abandoned Shallow Accumulation in water of well groundwater Injection deep, stably stratified lake well well Accumulation in CO2 topographic IIIIIII Off gas from well direct cumulation depression to air n basement-Wetlands CO2-3 CO2 Lake Pore Water table Vadose zone pressure CO2 plume Dissolution plume plume Dittusion andslide damage to surface plume Dissolution plume plume CO₂ dissolved Brine/CO₂ Separate phase CO2 in groundwater contamination of geologic Annular CO2 in low

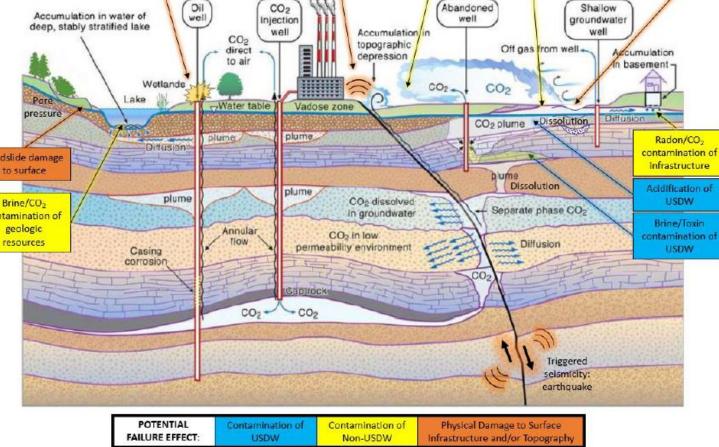


Illustration not to scale (depth scale is condensed for illustrative purposes)

Premise: Underground storage is "safe"

leakage, blowouts

other examples in last decade

- Blowout from CO₂ storage site after EOR; CO₂ spew-out 37 days; CO₂ blanketed area; deer suffocated; workers sent to hospitals; Mississippi 2011
- **Gas-bubbling creek**, Wyo due to unpermitted CO₂ release 2012
- Series of **repeated** CO₂ **leaks** from a Wyo oil field that used CO₂ from Exxon for EOR 2004-2016
- School in Wyo forced to close; houses evacuated due to leakage of CO₂ from storage (at EOR storage site) 2016

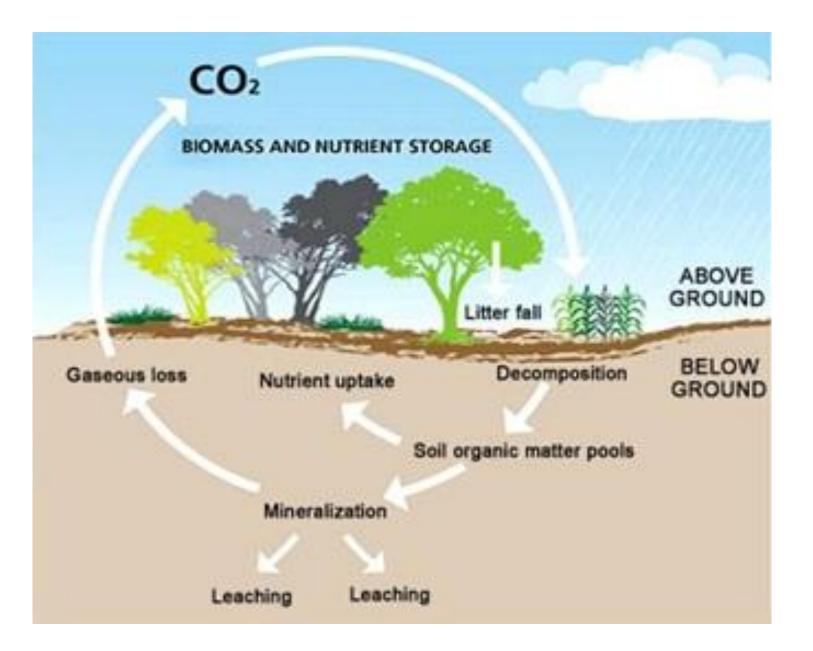
A publicly-financed sewer system for the fossil fuel industry.

What could work?

IPCC Report Data Show:

- <u>Biological sequestration</u> methods are effective now, and grow increasingly effective through mid-century and beyond.
- <u>Mechanical capture</u> "Direct Air Carbon Capture & Storage" fails now and remains ineffective through mid-century.

Method	Global GtCO2/yr by 2030	Global GtCO2/yr by 2050	Global GtCO2/yr by 2100
Annual net CO2 removal, <u>biological</u> <u>sequestration</u> ("managed land")	0.86	2.98	4.19
DAC	0	0.02	1.02

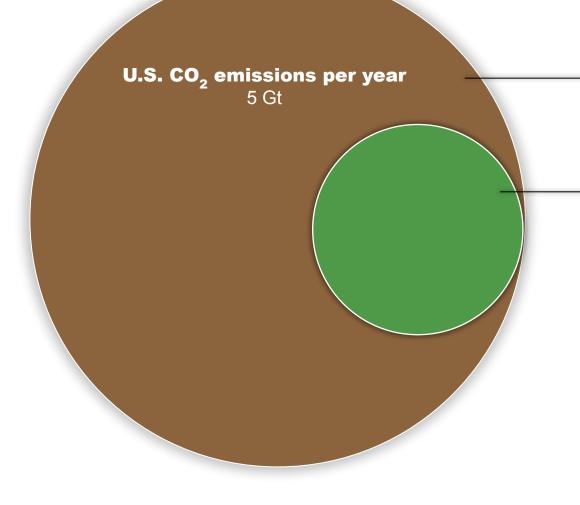

Global CO2 Removal and Sequestration/yr: Biological CDR and DACCS

IPCC defines "managed land" to mean primarily reforestation, afforestation, improved forest management and ecosystem conservation.

Data source: IPCC 2022 *Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.* Page 12-40.

Biological Systems

- Forests
- Farms
- Grasslands
- Wetlands



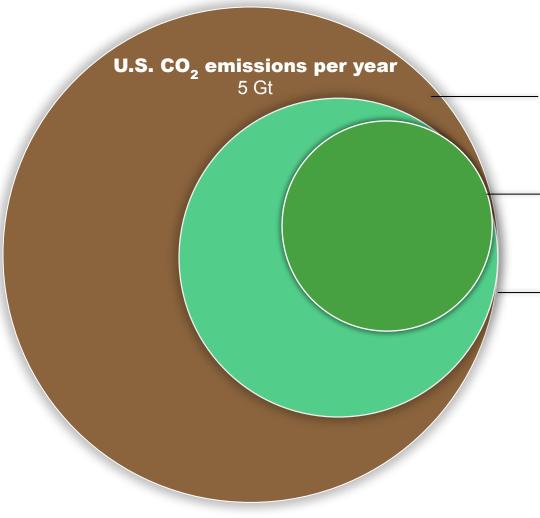
<u>Carbon dioxide removal–What's worth doing?</u> <u>A biophysical and public need perspective</u>

by June Sekera, Dominique Cagalanan, Amy Swan, Richard Birdsey, Neva Goodwin, Andreas Lichtenberger

> *PLOS Climate* February 14, 2023

Amount of CO₂ removed from the atmosphere now: Biological Sequestration vs Mechanical Carbon Capture

U.S. CO₂ emissions per year: 5 Gt


Amount of CO₂ per year:

Biological <u>net sequestration</u>¹ now; U.S.: .9 Gt Mechanical CO₂ removal² now: 0.0

 <u>Net</u> sequestration -- i.e., net uptake by plant growth minus emissions from respiration, harvesting fire, etc..
 Biological methods included here: forest mgmt.; reforestation; regenerative agriculture; wetlands management & restoration.

2. There is no significant atmospheric CO_2 removal by mechanical methods. DAC plants are boutique. And source capture (CCS) does not remove CO_2 from the atmosphere. CCS is likely *increasing* the amount of CO_2 in the atmosphere because emissions likely exceed removals, due to emissions from the capture process itself and from EOR oil production, and oil transport, crude refining and product combustion.

US Potential Biological Sequestration with **Improved Practices**

U.S. CO₂ emissions per year: 5 Gt

Biological net¹ sequestration <u>now</u>, U.S. : 0.9 Gt

Biological net sequestration with improved practices, U.S.: 2.08 Gt/yr. ~ 40% of U.S. emissions Not via offsets.

Mechanical carbon removal U.S. now: 0.0

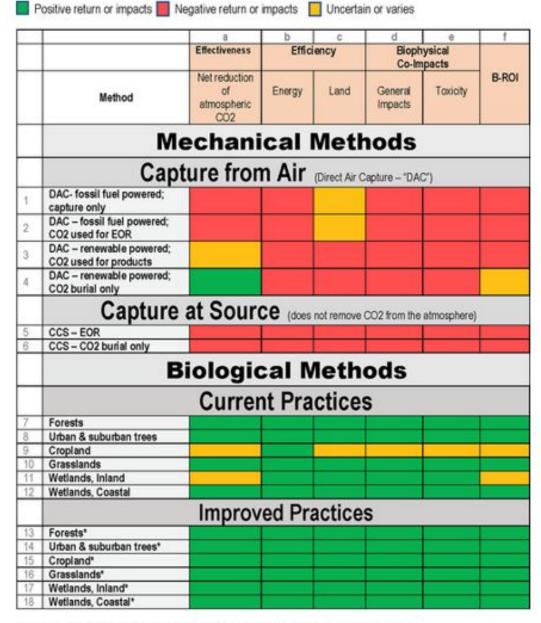

1. <u>Net</u> sequestered -- i.e., net uptake by plant growth minus emissions from respiration, harvesting fire, etc.. Natural methods included here = forest mgmt.; reforestation, regenerative agriculture; wetlands management & restoration.

Fig 1. Carbon Accountability Dashboard.

Explanations for each cell are in the Legend.

Note that all designations exclude effects of "carbon offsets" or "carbon credits," which can counteract carbon removal accomplishments.

Carbon dioxide removal–What's worth doing? <u>A biophysical and public need perspective</u> Feb 14, 2023

* For details on improved practices, see S2 Carbon Accountability Dashboard Legend.

Instead of subsidies for mechanical carbon capture

- Use the \$ to pay communities, farmers, indigenous groups, public agencies to:
 - •Adopt / expand regenerative ag practices.
 - •Plant trees in urban & rural communities.
 - •Restore forests.
 - •Restore grasslands.
 - •Restore wetlands.

end of slide show

June Sekera

* Visiting Scholar, The New School for Social Research

* Senior Research Fellow, Global Development Policy Center, Boston University

sekeraj@newschool.edu